首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   0篇
  国内免费   3篇
测绘学   3篇
大气科学   6篇
地球物理   3篇
地质学   13篇
海洋学   3篇
天文学   4篇
自然地理   1篇
  2021年   1篇
  2018年   2篇
  2017年   2篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2013年   4篇
  2012年   3篇
  2011年   3篇
  2009年   2篇
  2008年   1篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2000年   1篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1983年   1篇
  1982年   1篇
排序方式: 共有33条查询结果,搜索用时 31 毫秒
1.
Variations in the mean proloculus size (MPS) of the benthic foraminiferal speciesRotalidium annectens were studied in a core collected off Karwar (20 m water depth), on the west coast of India. Comparison of downcore variations in the MPS with rainfall (five-year average) over a period of 100 years from the catchment area of the Kali River shows a direct correlation. This implies that higher MPS values indicate high rainfall over the catchment area and thus confirms the earlier hypothesis that the MPS is inversely related to salinity. The correspondence between MPS and rainfall shows a high potential in generating proximity data for the reconstruction of a paleo-precipitational history.  相似文献   
2.
Fifty two surface sediment samples collected from the region off Goa, central west coast of India from water depths of 15–3300 m were analyzed with special emphasis on foraminiferal content. Rectilinear benthic foraminiferal morphogroup shows a high relative abundance within Oxygen Minimum Zone (OMZ), both shallow marine (50–60 m water depth) and intermediate to deep water (150–1500 m water depth). We gave special emphasis on four rectilinear foraminiferal genera, namely Fursenkoina, Bolivina, Bulimina and Uvigerina to observe their individual distribution among OMZ. We found genus Fursenkoina predominates at the shallow water OMZ, within the water depth zone of 50–60 m. Within 150–1500 m water depth, which is considered as intermediate to deep water OMZ in this region, genus Uvigerina shows its highest abundance above 1000 m water depth, whereas genus Bulimina shows its affinity with deeper water environment (>1000 m water depth). Genus Bolivina does not show any such depth preference, except its higher abundance in only intermediate to deep water OMZ. This depth differentiation among four rectilinear benthic foraminiferal genera presents the basic data for palaeoclimatic study based on the extent and intensity of OMZ along with the palaeobathymetry study.  相似文献   
3.
4.
Decadal variability in the climate system from the Atlantic Multidecadal Oscillation (AMO) is one of the major sources of variability at this temporal scale that climate models must properly incorporate because of its climate impact. The current analysis of historical simulations of the twentieth century climate from models participating in the CMIP3 and CMIP5 projects assesses how these models portray the observed spatiotemporal features of the sea surface temperature (SST) and precipitation anomalies associated with the AMO. A short sample of the models is analyzed in detail by using all ensembles available of the models CCSM3, GFDL-CM2.1, UKMO-HadCM3, and ECHAM5/MPI-OM from the CMIP3 project, and the models CCSM4, GFDL-CM3, UKMO-HadGEM2-ES, and MPI-ESM-LR from the CMIP5 project. The structure and evolution of the SST anomalies of the AMO have not progressed consistently from the CMIP3 to the CMIP5 models. While the characteristic period of the AMO (smoothed with a binomial filter applied fifty times) is underestimated by the three of the models, the e-folding time of the autocorrelations shows that all models underestimate the 44-year value from observations by almost 50 %. Variability of the AMO in the 10–20/70–80 year ranges is overestimated/underestimated in the models and the variability in the 10–20 year range increases in three of the models from the CMIP3 to the CMIP5 versions. Spatial variability and correlation of the AMO regressed precipitation and SST anomalies in summer and fall indicate that models are not up to the task of simulating the AMO impact on the hydroclimate over the neighboring continents. This is in spite of the fact that the spatial variability and correlations in the SST anomalies improve from CMIP3 to CMIP5 versions in two of the models. However, a multi-model mean from a sample of 14 models whose first ensemble was analyzed indicated there were no improvements in the structure of the SST anomalies of the AMO or associated regional precipitation anomalies in summer and fall from CMIP3 to CMIP5 projects.  相似文献   
5.
Being sensitive to environmental changes, foraminifera have been extensively used to monitor pollution level in the marine environment, including the effect of mining in coastal areas. In the Goa state of India, the rejects from opencast mining on land largely find their way to the estuaries, as washout during monsoon. Additionally, the Mormugao Port at the mouth of the Zuari estuary is the hub of activities due to the transport of ore from hinterland areas by barges and its subsequent loading for export. On the directive of the Supreme Court of India, all the mining-related activities abruptly stopped throughout India, including that in Goa in 2012, and got reinstated in 2015. Therefore, it provided a fit case to test the effectiveness of benthic foraminifera as an indicator of environmental impact due to mining activities. A total of ten surface sediment samples from five locations in Zuari estuary were collected from a depth range of 4.5–8.5 m in the years of 2013 and 2016 and were analyzed for both the living (stained) and dead benthic foraminifera. The year 2013 represents a time interval immediately after the closure of extensive mining activity, and the sampling during 2016 represents minimal mining. The living benthic foraminiferal abundance was higher (19–54/g sediment) during 2013 and decreased substantially during 2016 (3–22/g sediment), suggesting an adverse effect of activities associated with mine closure on benthic foraminifera. Additionally, the relative abundance of Ammonia was also significantly low during the year 2016. The temporal variation in dead foraminifera was, however, different than that of the living foraminifera. The differential response was attributed to the terrigenous dilution as a result of change in sedimentation rate. Therefore, we conclude that living foraminifera correctly incorporate the changes in mining pattern and may be used as an effective tool to monitor the impact of mining. We further suggest that the potential counter effect of terrigenous dilution on total and living benthic foraminiferal population should be considered while interpreting temporal variations in foraminiferal abundance in marginal marine settings.  相似文献   
6.
In order to develop a viable foraminiferal proxy for heavy metal pollutants, juvenile specimens of Rosalina leei were subjected to different mercury concentrations (0-180 ng/l). Initially considerable growth was observed in specimens kept in saline water having a mercury concentration up to 100 ng/l. But with the gradual increase in concentration of mercury the growth rate started decreasing. Total growth achieved was significantly lower in case of specimens kept at relatively higher mercury concentrations then those maintained in normal saline water. The most significant result of this experiment was the addition of abnormal chambers in the specimens kept at higher mercury concentration. Later the specimens kept at highest concentration (180 ng/l) were subjected to progressively increasing concentration of mercury to see the further effects and it was found that the specimens were still living at as high a mercury concentration as 260 ng/l although there was no growth.  相似文献   
7.
The veracity of modeled air–sea interactions in the Indian Ocean during the South Asian summer monsoon is examined. Representative simulations of the twentieth century climate, produced by coupled general circulation models as part of the Intergovernmental Panel on Climate Change Fourth Assessment Report, are the analysis targets along with observational data. The analysis shows the presence of large systematic biases in coupled simulations of boreal summer precipitation, evaporation, and sea surface temperature (SST) in the Indian Ocean, often exceeding 50% of the climatological values. Many of the biases are pervasive, being common to most simulations. The representation of air–sea interactions is also compromised. Coupled models tend to emphasize local forcing in the Indian Ocean as reflected by their large precipitation–SST correlations, at odds with the weak links in observations which suggest the importance of non-local controls. The evaporation–SST correlations are also differently represented, indicating atmospheric control on SST in some models and SST control on evaporation in others. The Indian monsoon rainfall–SST links are also misrepresented: the former is essentially uncorrelated with antecedent and contemporaneous Indian Ocean SSTs in nature, but not so in most of the simulations. Overall, coupled models are found deficient in portraying local and non-local air–sea interactions in the Indian Ocean during boreal summer. In our opinion, current models cannot provide durable insights on regional climate feedbacks nor credible projections of regional hydroclimate variability and change, should these involve ocean–atmosphere interactions in the Indian basin.  相似文献   
8.
A three-dimensional regional ocean model is used to examine the impact of positive Indian ocean dipole (pIOD) events on the coastal upwelling features at the southwest coast of India (SWCI). Two model experiments are carried out with different surface boundary conditions that prevailed in the normal and pIOD years from 1982 to 2010. Model experiments demonstrate the weakening of coastal upwelling at the SWCI in the pIOD years. The reduced southward meridional wind stress off the SWCI leads to comparatively lower offshore Ekman transport during August–October in the pIOD years to that in normal years. The suppressed coastal upwelling results in warmer sea surface temperature and deeper thermocline in the pIOD years during June–September. The offshore spatial extent of upwelled colder (<?22 °C) water was up to 75.5° E in August–September in normal years that was limited up to 76.2° E in pIOD years. The heat budget analysis reveals the decreased contribution of vertical entrainment process to the mixed layer cooling in pIOD years which is almost half of that of normal years in October. The net heat flux term shows warming tendency during May–November with a higher magnitude (+?0.4 °C day?1) in normal years than pIOD years (+?0.28 °C day?1). The biological productivity is found to reduce during the pIOD years as the concentration of phytoplankton and zooplankton decreases over the region of coastal upwelling at SWCI. Nitrate concentration in the pIOD years dropped by half during August–September and dropped by an order of magnitude in October as compared to its ambient concentration of 13 μmol L?1 in normal years.  相似文献   
9.
Temporal changes in benthic foraminiferal morpho-groups were suggested as an effective proxy to reconstruct past monsoon intensity from the Arabian Sea. Here, in order to test the applicability of temporal variation in morpho-groups to reconstruct past monsoon intensity from the Bay of Bengal, we have documented recent benthic foraminiferal distribution from the continental shelf region of the northwestern Bay of Bengal. Based on the external morphology, benthic foraminifera were categorized into rounded symmetrical (RSBF) and angular asymmetrical benthic foraminifera (AABF). Additionally, a few other dominant groups were also identified based on test composition (agglutinated, calcareous) and abundance (Asterorotalids and Nonions). The relative abundance of each group was compared with the ambient physico-chemical conditions, including dissolved oxygen, organic matter, salinity and temperature. We report that the RSBF are abundant in comparatively warm and well oxygenated waters of low salinity, suggesting a preference for high energy environment, whereas AABF dominate relatively cold, hypersaline deeper waters with low dissolved oxygen, indicating a low energy environment. The agglutinated foraminifera, Asterorotalids and Nonions dominate shallow water, low salinity regions, whereas the calcareous benthic foraminiferal abundance increases away from the riverine influx regions. Food availability, as estimated from organic carbon abundance in sediments, has comparatively less influence on faunal distribution in the northwestern Bay of Bengal, as compared to dissolved oxygen, temperature and salinity. We conclude that the factors associated with freshwater influx affect the distribution of benthic foraminiferal morpho-groups in the northwestern Bay of Bengal and thus it can be used to reconstruct past monsoon intensity from the Bay of Bengal.  相似文献   
10.
Kosovichev  A. G.  Schou  J.  Scherrer  P. H.  Bogart  R. S.  Bush  R. I.  Hoeksema  J. T.  Aloise  J.  Bacon  L.  Burnette  A.  De Forest  C.  Giles  P. M.  Leibrand  K.  Nigam  R.  Rubin  M.  Scott  K.  Williams  S. D.  Basu  Sarbani  Christensen-dalsgaard  J.  DÄppen  W.  Duvall  T. L.  Howe  R.  Thompson  M. J.  Gough  D. O.  Sekii  T.  Toomre  J.  Tarbell  T. D.  Title  A. M.  Mathur  D.  Morrison  M.  Saba  J. L. R.  Wolfson  C. J.  Zayer  I.  Milford  P. N. 《Solar physics》1997,170(1):43-61
The medium-l program of the Michelson Doppler Imager instrument on board SOHO provides continuous observations of oscillation modes of angular degree, l, from 0 to 300. The data for the program are partly processed on board because only about 3% of MDI observations can be transmitted continuously to the ground. The on-board data processing, the main component of which is Gaussian-weighted binning, has been optimized to reduce the negative influence of spatial aliasing of the high-degree oscillation modes. The data processing is completed in a data analysis pipeline at the SOI Stanford Support Center to determine the mean multiplet frequencies and splitting coefficients. The initial results show that the noise in the medium-l oscillation power spectrum is substantially lower than in ground-based measurements. This enables us to detect lower amplitude modes and, thus, to extend the range of measured mode frequencies. This is important for inferring the Sun's internal structure and rotation. The MDI observations also reveal the asymmetry of oscillation spectral lines. The line asymmetries agree with the theory of mode excitation by acoustic sources localized in the upper convective boundary layer. The sound-speed profile inferred from the mean frequencies gives evidence for a sharp variation at the edge of the energy-generating core. The results also confirm the previous finding by the GONG (Gough et al., 1996) that, in a thin layer just beneath the convection zone, helium appears to be less abundant than predicted by theory. Inverting the multiplet frequency splittings from MDI, we detect significant rotational shear in this thin layer. This layer is likely to be the place where the solar dynamo operates. In order to understand how the Sun works, it is extremely important to observe the evolution of this transition layer throughout the 11-year activity cycle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号